Name:

Problem 1. Fermat found the slope of a tangent line by computing the slope from point A = (x, f(x)) to point B = (x + h, f(x + h)), simplifying to cancel an h, and then setting h = 0 and simplifying again. Try this for the case Descartes considered; let $f(x) = \sqrt{x}$, and find the slope of the tangent line at (1,1) as follows:

- (a) The average rate of change of f(x) from x=a to x=b is $\frac{\Delta y}{\Delta x}=\frac{f(b)-f(a)}{b-a}$. Compute the average rate of change of $f(x)=\sqrt{x}$ from a=1 to b=1+h; you get a "difference quotient".
- (b) You want to set h = 0 but you cannot divide by zero. So, multiply the top and the bottom by the "conjugate" of the top. Simplify until the h on the bottom cancels with one on the top.

(c) Now plug in h = 0 everywhere else. What is the slope?

Problem 2. Repeat the process above, but in more generality. Let $f(x) = \sqrt{x}$, and find the slope of the tangent line at (x, f(x)) using Fermat's method:

- (a) Compute the average rate of change of $f(x) = \sqrt{x}$ from x to x + h.
- (b) Multiply the top and the bottom by the "conjugate" of the top. Simplify until h cancels.

(c) Plug in h = 0. What is the slope? (It is a function of x.)

Problem 3. Repeat Problem 2 with the function $f(x) = x^2$.

Problem 4. Repeat Problem 2 with the function $f(x) = x^3$. Note that $(x - h)^3 = x^3 - 3hx^2 + 3h^2x - h^3$.

Problem 5. Repeat Problem 2 with the function $f(x) = \frac{1}{x}$.